Four-scale description of membrane sculpting by BAR domains

Biophys J. 2008 Sep 15;95(6):2806-21. doi: 10.1529/biophysj.108.132563. Epub 2008 May 30.

Abstract

BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / drug effects*
  • Cell Membrane / metabolism*
  • Computer Simulation
  • Drosophila melanogaster / metabolism*
  • Elasticity
  • Models, Molecular*
  • Nerve Tissue Proteins / chemistry*
  • Nerve Tissue Proteins / metabolism
  • Nerve Tissue Proteins / pharmacology*
  • Protein Structure, Tertiary
  • Time Factors

Substances

  • Nerve Tissue Proteins
  • amphiphysin