Background: Ly-6C(hi) monocytes are key contributors to atherosclerosis in mice. However, the manner in which Ly-6C(hi) monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6C(hi) monocytes to atherosclerotic lesions.
Methods and results: To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6C(hi) and Ly-6C(lo) monocytes from wild-type mice, ApoE(-/-) mice, and mice lacking both ApoE and PSGL-1 genes (ApoE(-/-)/PSGL-1(-/-)). We found that Ly-6C(hi) monocytes expressed a higher level of PSGL-1 and had enhanced binding to fluid-phase P- and E-selectin compared with Ly-6C(lo) monocytes. Under in vitro flow conditions, more Ly-6C(hi) monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6C(lo) cells. In an ex vivo perfused carotid artery model, Ly-6C(hi) monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6C(lo) monocytes in a PSGL-1-dependent manner. In vivo, ApoE(-/-) mice lacking PSGL-1 had impaired Ly-6C(hi) monocyte recruitment to atherosclerotic lesions. Moreover, ApoE(-/-)/PSGL-1(-/-) mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE(-/-)/PSGL-1(-/-) mice also developed smaller neointima and atherosclerotic plaques.
Conclusions: These data indicate that PSGL-1 is a new marker for Ly-6C(hi) monocytes and a major determinant for Ly-6C(hi) cell recruitment to sites of atherosclerosis in mice.