Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits

Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8154-9. doi: 10.1073/pnas.0711624105. Epub 2008 Jun 5.

Abstract

It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • COS Cells
  • Calcium / pharmacology
  • Calcium Channels, L-Type / metabolism*
  • Calmodulin / metabolism*
  • Calmodulin / pharmacology
  • Chlorocebus aethiops
  • Electrophysiology
  • Humans
  • Ion Channel Gating* / drug effects
  • Mutant Proteins / metabolism
  • Protein Binding / drug effects
  • Protein Subunits / metabolism*
  • Recombinant Proteins / metabolism

Substances

  • CACNA1C protein, human
  • Calcium Channels, L-Type
  • Calmodulin
  • L-type calcium channel alpha(1C)
  • Mutant Proteins
  • Protein Subunits
  • Recombinant Proteins
  • Calcium