Combinatorial patterns of histone acetylations and methylations in the human genome

Nat Genet. 2008 Jul;40(7):897-903. doi: 10.1038/ng.154. Epub 2008 Jun 15.

Abstract

Histones are characterized by numerous posttranslational modifications that influence gene transcription. However, because of the lack of global distribution data in higher eukaryotic systems, the extent to which gene-specific combinatorial patterns of histone modifications exist remains to be determined. Here, we report the patterns derived from the analysis of 39 histone modifications in human CD4(+) T cells. Our data indicate that a large number of patterns are associated with promoters and enhancers. In particular, we identify a common modification module consisting of 17 modifications detected at 3,286 promoters. These modifications tend to colocalize in the genome and correlate with each other at an individual nucleosome level. Genes associated with this module tend to have higher expression, and addition of more modifications to this module is associated with further increased expression. Our data suggest that these histone modifications may act cooperatively to prepare chromatin for transcriptional activation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Cells, Cultured
  • Chromosome Mapping
  • Cluster Analysis
  • Enhancer Elements, Genetic
  • Genome, Human* / physiology
  • Histone Acetyltransferases / metabolism*
  • Histone Methyltransferases
  • Histone-Lysine N-Methyltransferase / metabolism*
  • Histones / metabolism*
  • Humans
  • Methylation
  • Promoter Regions, Genetic
  • Protein Binding
  • Protein Methyltransferases

Substances

  • Histones
  • Histone Methyltransferases
  • Protein Methyltransferases
  • Histone-Lysine N-Methyltransferase
  • Histone Acetyltransferases