We describe a method for immunogold staining of nuclear matrix proteins using ultra-small gold particles. The nuclear matrix of HeLa cells is obtained by two fractionation steps: (a) cell permeabilization with Triton X-100 to isolate the cytoskeleton, and (b) nuclease digestion followed by an incubation in 0.25 M ammonium sulfate to isolate the nuclear matrix. To prevent redistribution of internal matrix proteins during nuclear matrix preparation, pre-fixation with 0.1% acrolein was performed. Under this condition up to 80% of protein and 90% of DNA and RNA could be removed on nuclear matrix isolation, without redistribution of internal nuclear matrix proteins. For immunogold labeling, 1-nm gold probes appeared to be required to obtain optimal penetration into the nucleus. These particles can be visualized after silver enhancement. After gold labeling the matrices are stained, embedded in Epon, and ultra-thin sections are prepared for examination in the electron microscope. The applicability of this method is examplified by the localization of a 125 KD internal nuclear matrix protein and the lamins A and C in nuclear matrix preparations of HeLa cells.