AMAD, an emodin azide methyl anthraquinone derivative, was extracted from the nature giant knotweed rhizome of traditional Chinese herbs. Here, we investigated the anticancer activities and signaling pathways implicated in AMAD-induced apoptosis in human breast cancer cell lines MDA-MB-453 and human lung adenocarcinoma Calu-3 cells. AMAD was found to have a potent cytotoxic effect on both cell lines. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and activated caspases (cysteine aspartase) cascade involving in caspase-8, caspase-9, caspase-3, and poly(ADP-ribose) polymerase cleavage in a concentration-dependent manner. It was noteworthy that AMAD also effectively cleaved Bid, a BH3 domain-containing proapoptotic Bcl-2 family member, and induced the subsequent release of cytochrome c from mitochondria into the cytosol. Furthermore, suppression of caspase-8 activity with Z-IETD-FMK partially inhibited release of cytochrome c and Bid cleavage induced by AMAD, whereas exposure to Z-LETD-FMK, a caspase-9 inhibitor, had no effect. Additionally, there was significant change in other mitochondrial membrane proteins triggered by AMAD, such as Bcl-xl and Bad. It was intriguing that AMAD decreased the generation of reactive oxygen species in both cell lines. DNA-binding assay exhibited apoptosis induced by AMAD was not involved in intercalating to DNA. Taken together, these data suggested that AMAD induced apoptosis via a mitochondrial pathway involving caspase-8/Bid activation in both cell lines.