Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms

J Am Chem Soc. 2008 Jul 23;130(29):9500-6. doi: 10.1021/ja8018669. Epub 2008 Jun 26.

Abstract

We investigate the photoconversion of aqueous 8 nm Ag nanocrystal seeds into 70 nm single crystal plate nanoprisms. The process relies on the excitation of Ag surface plasmons. The process requires dioxygen, and the transformation rate is first-order in seed concentration. Although citrate is necessary for the conversion, and is consumed, the transformation rate is independent of citrate concentration. We propose a mechanism that accounts for these features by coupling the oxidative etching of the seed and the subsequent photoreduction of aqueous Ag(+). The reduced Ag deposits onto a Ag prism of specific size that has a cathodic photovoltage resulting from plasmon "hot hole" citrate photo-oxidation. This photovoltage mechanism also explains recent experimental results involving single and dual wavelength irradiation and the core/shell synthesis of Ag layers on Au seeds.