High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids

Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9216-20. doi: 10.1073/pnas.0800406105. Epub 2008 Jun 27.

Abstract

Hepatitis B virus (HBV) is a major human pathogen. In addition to its importance in human health, there is growing interest in adapting HBV and other viruses for drug delivery and other nanotechnological applications. In both contexts, precise biophysical characterization of these large macromolecular particles is fundamental. HBV capsids are unusual in that they exhibit two distinct icosahedral geometries, nominally composed of 90 and 120 dimers with masses of approximately 3 and approximately 4 MDa, respectively. Here, a mass spectrometric approach was used to determine the masses of both capsids to within 0.1%. It follows that both lattices are complete, consisting of exactly 180 and 240 subunits. Nanoindentation experiments by atomic-force microscopy indicate that both capsids have similar stabilities. The data yielded a Young's modulus of approximately 0.4 GPa. This experimental approach, anchored on very precise and accurate mass measurements, appears to hold considerable potential for elucidating the assembly of viruses and other macromolecular particles.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Capsid / chemistry*
  • Capsid / ultrastructure
  • Hepatitis B virus / chemistry*
  • Hepatitis B virus / ultrastructure
  • Mass Spectrometry*
  • Microscopy, Atomic Force
  • Thermodynamics
  • Virus Assembly*