Background: Activation of the Wnt signaling pathway is frequently observed in hepatocellular carcinoma (HCC), though mutation of three of its components, CTNNB1, AXIN1, and AXIN2, is observed substantially less often.
Methods: We examined the relationship between Wnt signaling and epigenetic alteration of secreted frizzled-related protein (SFRP) genes in HCC.
Results: We frequently detected the active form of beta-catenin and accumulation of nuclear beta-catenin in liver cancer cell lines. We detected methylation of SFRP family genes in liver cancer cell lines (SFRP1, 9/12, 75%; SFRP2, 7/12, 58%; SFRP4, 3/12, 25%; SFRP5, 7/12, 58%) and primary HCCs (SFRP1, 9/19, 47%; SFRP2, 12/19, 63%; SFRP5, 8/19, 42%), though methylation of SFRP4 was not found in primary HCCs. SFRP methylation also was detected in hepatitis B or C virus-associated chronic hepatitis (SFRP1, 6/37, 16%; SFRP2, 14/37, 38%; SFRP5, 5/37, 14%) and liver cirrhosis (SFRP1, 10/28, 36%; SFRP2, 9/28, 32%; SFRP5, 3/28, 11%), suggesting that methylation of these genes is an early event in liver carcinogenesis. Ectopic expression of SFRPs downregulated T-cell factor/lymphocyte enhancer factor (TCF/LEF) transcriptional activity in liver cancer cells, while overexpression of a beta-catenin mutant and depletion of SFRP1 using siRNA synergistically upregulated TCF/LEF transcriptional activity.
Conclusions: Our results confirm the frequent methylation and silencing of Wnt antagonist genes in HCC, and suggest that their loss of function contributes to activation of Wnt signaling during hepatocarcinogenesis.