A model was formulated to examine specific experimental data of growth and heterologous product formation with recombinant Saccharomyces cerevisiae while incorporating available literature. The model simulated dry cell weight, glucose, ethanol, dissolved oxygen, human Epidermal Growth Factor (hEGF) production, fraction of recombinant cells, oxygen uptake rate, and carbon dioxide production rate for batch, fed batch, and hollow fiber bioreactor configurations. Nineteen differential equations, 24 analytical equations, and 48 parameters were required. Due to the lack of detailed studies needed for the ADH-II and the TCA enzyme pool, 8 of the 48 parameters were adjustable. Simulation results are presented for verification of the model which successfully described the observed phenomena for the fermentations of S. cerevisiae strain AB103. 1 pYalphaEF-25. Also presented is a statistical analysis of the model's fit and model parameter sensitivity.