Computational modeling for bedside application

Heart Fail Clin. 2008 Jul;4(3):371-8. doi: 10.1016/j.hfc.2008.02.009.

Abstract

Advances in computer power, novel diagnostic and therapeutic medical technologies, and an increasing knowledge of pathophysiology from gene to organ systems make it increasingly feasible to apply multiscale patient-specific modeling based on proven disease mechanisms. Such models may guide and predict the response to therapy in many areas of medicine. This is an exciting and relatively new approach, for which efficient methods and computational tools are of the utmost importance. Investigators have designed patient-specific models in almost all areas of human physiology. Not only will these models be useful in clinical settings to predict and optimize the outcome from surgery and non-interventional therapy, but they will also provide pathophysiologic insights from the cellular level to the organ system level. Models, therefore, will provide insight as to why specific interventions succeed or fail.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Artificial Intelligence
  • Clinical Protocols
  • Computer Simulation*
  • Heart Diseases* / diagnosis
  • Heart Diseases* / therapy
  • Humans
  • Models, Theoretical*
  • Software