Refinement and standardization of synthetic biological parts and devices

Nat Biotechnol. 2008 Jul;26(7):787-93. doi: 10.1038/nbt1413.

Abstract

The ability to quickly and reliably engineer many-component systems from libraries of standard interchangeable parts is one hallmark of modern technologies. Whether the apparent complexity of living systems will permit biological engineers to develop similar capabilities is a pressing research question. We propose to adapt existing frameworks for describing engineered devices to biological objects in order to (i) direct the refinement and use of biological 'parts' and 'devices', (ii) support research on enabling reliable composition of standard biological parts and (iii) facilitate the development of abstraction hierarchies that simplify biological engineering. We use the resulting framework to describe one engineered biological device, a genetically encoded cell-cell communication receiver named BBa_F2620. The description of the receiver is summarized via a 'datasheet' similar to those widely used in engineering. The process of refinement and characterization leading to the BBa_F2620 datasheet may serve as a starting template for producing many standardized genetically encoded objects.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomimetics / instrumentation*
  • Biomimetics / methods*
  • Cell Physiological Phenomena*
  • Computer Simulation
  • Genetic Engineering / methods*
  • Models, Biological*