Integument of the tapeworm scolex. 1. Freeze-fracture of the syncytial layer, microvilli and discoid bodies

Tissue Cell. 1986;18(6):869-85. doi: 10.1016/0040-8166(86)90044-3.

Abstract

The tegument of cestodes is the most important and structurally complex metabolic interface between these parasites and the hostile environment in which they reside. In spite of the complex metabolic, regulatory and immunological properties of this layer of syncytial cytoplasm, which are relatively well known, the detailed fine structural anatomy of the cestode tegument remains equivocal. The present study therefore reports the freeze-fracture morphology of the tapeworm (Hymenolepis diminuta) tegument. The most important features revealed by analysis of platinum replicas of freeze-fractured tapeworm scolex-neck tegument include: (a) presence of highly ordered linear and/or circumferentially-orientated rows of intramembrane particles situated on the PF fracture face of microvillar plasma membrane, which may participate in movements of the microvilli, (b) presence of apparent 'pores' (11 nm in diameter) at the tips of the tegumentary microvilli, which could serve as regulated gates through which extramicrovillar surface coating materials can be extruded, and (c) the alignment of cytoplasmic discoid bodies into positions at the bases of the surface microvilli such that they could move into the core of each microvillus and thereby release their contents for extrusion (via the pores) onto the outer surface of the microvilli. Concomitantly, the limiting membrane of the discoid bodies could be added to the tegument plasma membrane and thereby contribute to the rapid turnover of the tegumentary surface. This study provides the first detailed account of the ultrastructural anatomy of the tapeworm tegument and is intended to serve as a point of reference for future investigations of tapeworm tegumentary functions.