Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse

Mutagenesis. 2008 Nov;23(6):483-90. doi: 10.1093/mutage/gen037. Epub 2008 Jul 16.

Abstract

FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benz(a)Anthracenes / toxicity*
  • Cells, Cultured
  • DNA Adducts
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Lac Operon
  • Lung / drug effects*
  • Lung / metabolism
  • Mice
  • Mice, Transgenic
  • Mutagenicity Tests
  • Mutagens / toxicity*

Substances

  • 3-aminobenzanthrone
  • Benz(a)Anthracenes
  • DNA Adducts
  • Mutagens
  • 3-nitrobenzanthrone