Dermaseptin S9 (Drs S9), GLRSKIWLWVLLMIWQESNKFKKM, isolated from frog skin, does not resemble any of the cationic and amphipathic antimicrobial peptides identified to date, having a highly hydrophobic core sequence flanked at either side by cationic termini. Previous studies [Lequin O, Ladram A, Chabbert A, Bruston F, Convert O, Vanhoye D, Chassaing G, Nicolas P & Amiche M (2006) Biochemistry45, 468-480] demonstrated that this peptide adopted a non-amphipathic alpha-helical conformation in trifluoroethanol/water mixtures, but was highly aggregated in aqueous solutions and in the presence of sodium dodecyl sulfate micelles. Circular dichroism, FTIR and attenuated total reflectance FTIR spectroscopies, combined with a surface plasmon resonance study, show that Drs S9 forms stable and ordered beta-sheet aggregates in aqueous buffers or when bound to anionic or zwitterionic phospholipid vesicles. These structures slowly assembled into amyloid-like fibrils in aqueous environments via spherical intermediates, as revealed by electron microscopy and Congo red staining. Drs S9 induced the directional migration of neutrophils, T lymphocytes and monocytes. Interestingly, the antimicrobial and chemotactic activities of Drs S9 are modulated by its amyloid-like properties. Whereas spherical oligomers of Drs S9 exhibit antimicrobial activity, the soluble, weakly self-associated forms of Drs S9 act on human leukocytes to promote chemotaxis and/or immunological response activation in the same range of concentration as amyloidogenic peptides Abeta(1-42), the most fibrillogenic isoform of amyloid beta peptides, and the prion peptide PrP(106-126).