Roles of ectodomain and transmembrane regions in ethanol and agonist action in purinergic P2X2 and P2X3 receptors

Neuropharmacology. 2008 Oct;55(5):835-43. doi: 10.1016/j.neuropharm.2008.06.044. Epub 2008 Jun 29.

Abstract

The present work investigated sites of ethanol action in ATP-gated P2X receptors (P2XRs) using chimeric strategies that exploited the differences in ethanol response between P2X2R (inhibition) and P2X3R (potentiation). We tested ethanol (10-200mM) effects on ATP- and alpha,beta-methylene-ATP (alpha,beta-meATP)-induced currents in wildtype P2X2, P2X3 and chimeric P2X2/P2X3Rs expressed in Xenopus oocytes using two-electrode voltage-clamp (-70mV). Exchanging ectodomain regions of P2X2 and P2X3Rs reversed wildtype ethanol responses. Substituting back portions of the P2X2R ectodomain at TM interfaces in chimeras that contained the P2X3R ectodomain restored wildtype P2X2R-like ethanol response. Point mutations that replaced non-conserved ectodomain residues at TM interfaces of P2X3Rs with homologous P2X2R residues identified positions that reversed the direction (304) or changed the magnitude (53, 55 and 313) of ethanol response. Homologous substitutions in P2X2Rs did not significantly alter wildtype P2X2R-like ethanol responses. These findings suggest that ectodomain segments at TM interfaces play key roles in determining qualitative and quantitative responses to ethanol of P2X2 and P2X3Rs. Studies that substituted TM regions of P2X3R with respective P2X2R TMs indicate that the TM1, but not the TM2, region plays a role in determining the magnitude of ethanol response. Studies with ATP and alpha,beta-meATP support prior indications that TM regions are important in agonist desensitization and suggest that both ectodomain and TM regions play roles in determining agonist potency and selectivity. Overall, these findings are the first to identify potential targets for ethanol in P2X2 and P2X3Rs and should provide insight into the sites of ethanol action in other P2XRs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / pharmacology
  • Animals
  • Central Nervous System Depressants / pharmacology*
  • Dose-Response Relationship, Drug
  • Ethanol / pharmacology*
  • Membrane Potentials / drug effects
  • Membrane Potentials / genetics
  • Mutation
  • Oocytes
  • Patch-Clamp Techniques / methods
  • Protein Structure, Tertiary / drug effects
  • Purinergic P2 Receptor Agonists*
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / physiology*
  • Receptors, Purinergic P2X2
  • Receptors, Purinergic P2X3
  • Xenopus laevis

Substances

  • Central Nervous System Depressants
  • Purinergic P2 Receptor Agonists
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2X2
  • Receptors, Purinergic P2X3
  • Ethanol
  • Adenosine Triphosphate
  • alpha,beta-methyleneadenosine 5'-triphosphate