Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer

Plant J. 2008 Nov;56(4):531-8. doi: 10.1111/j.1365-313X.2008.03617.x. Epub 2008 Aug 4.

Abstract

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Wall / physiology*
  • Elasticity
  • Microfibrils / physiology*
  • Microscopy, Electron, Scanning
  • Populus / physiology*
  • Scattering, Radiation
  • Stress, Mechanical*
  • Tensile Strength