A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse

Am J Physiol Cell Physiol. 2008 Oct;295(4):C897-904. doi: 10.1152/ajpcell.00179.2008. Epub 2008 Jul 23.

Abstract

The actin-binding protein alpha-actinin-3 is one of the two isoforms of alpha-actinin that are found in the Z-discs of skeletal muscle. alpha-Actinin-3 is exclusively expressed in fast glycolytic muscle fibers. Homozygosity for a common polymorphism in the ACTN3 gene results in complete deficiency of alpha-actinin-3 in about 1 billion individuals worldwide. Recent genetic studies suggest that the absence of alpha-actinin-3 is detrimental to sprint and power performance in elite athletes and in the general population. In contrast, alpha-actinin-3 deficiency appears to be beneficial for endurance athletes. To determine the effect of alpha-actinin-3 deficiency on the contractile properties of skeletal muscle, we studied isolated extensor digitorum longus (fast-twitch) muscles from a specially developed alpha-actinin-3 knockout (KO) mouse. alpha-Actinin-3-deficient muscles showed similar levels of damage to wild-type (WT) muscles following lengthening contractions of 20% strain, suggesting that the presence or absence of alpha-actinin-3 does not significantly influence the mechanical stability of the sarcomere in the mouse. alpha-Actinin-3 deficiency does not result in any change in myosin heavy chain expression. However, compared with alpha-actinin-3-positive muscles, alpha-actinin-3-deficient muscles displayed longer twitch half-relaxation times, better recovery from fatigue, smaller cross-sectional areas, and lower twitch-to-tetanus ratios. We conclude that alpha-actinin-3 deficiency results in fast-twitch, glycolytic fibers developing slower-twitch, more oxidative properties. These changes in the contractile properties of fast-twitch skeletal muscle from alpha-actinin-3-deficient individuals would be detrimental to optimal sprint and power performance, but beneficial for endurance performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actinin / genetics*
  • Actinin / metabolism
  • Animals
  • Gene Expression Regulation / physiology
  • Mice
  • Mice, Knockout
  • Muscle Contraction / genetics*
  • Muscle Contraction / physiology
  • Muscle Fatigue / genetics
  • Muscle Fatigue / physiology
  • Muscle Fibers, Fast-Twitch / physiology
  • Muscle Fibers, Slow-Twitch / physiology
  • Muscle, Skeletal / physiology*

Substances

  • Actn3 protein, mouse
  • Actinin