Background: Human B cells and plasmacytoid dendritic cells (pDC) are the only cells known to express both TLR7 and TLR9. Plasmacytoid dendritic cells are the primary IFN-alpha producing cells in response to TLR7 and TLR9 agonists. The direct effects of TLR7 stimulation on human B cells is less understood. The objective of this study was to compare the effects of TLR7 and TLR9 stimulation on human B cell function.
Results: Gene expression and protein production of cytokines, chemokines, various B cell activation markers, and immunoglobulins were evaluated. Purified human CD19+ B cells (99.9%, containing both naïve and memory populations) from peripheral blood were stimulated with a TLR7-selective agonist (852A), TLR7/8 agonist (3M-003), or TLR9 selective agonist CpG ODN (CpG2006). TLR7 and TLR9 agonists similarly modulated the expression of cytokine and chemokine genes (IL-6, MIP1 alpha, MIP1 beta, TNF alpha and LTA), co-stimulatory molecules (CD80, CD40 and CD58), Fc receptors (CD23, CD32), anti-apoptotic genes (BCL2L1), certain transcription factors (MYC, TCFL5), and genes critical for B cell proliferation and differentiation (CD72, IL21R). Both agonists also induced protein expression of the above cytokines and chemokines. Additionally, TLR7 and TLR9 agonists induced the production of IgM and IgG. A TLR8-selective agonist was comparatively ineffective at stimulating purified human B cells.
Conclusion: These results demonstrate that despite their molecular differences, the TLR7 and TLR9 agonists induce similar genes and proteins in purified human B cells.