The value of some Corsican sub-populations for genetic association studies

BMC Med Genet. 2008 Jul 28:9:73. doi: 10.1186/1471-2350-9-73.

Abstract

Background: Genetic isolates with a history of a small founder population, long-lasting isolation and population bottlenecks represent exceptional resources in the identification of disease genes. In these populations the disease allele reveals Linkage Disequilibrium (LD) with markers over significant genetic intervals, therefore facilitating disease locus identification. In a previous study we examined the LD extension on the Xq13 region in three Corsican sub-populations from the inner mountainous region of the island. On the basis of those previous results we have proposed a multistep procedure to carry out studies aimed at the identification of genes involved in complex diseases in Corsica. A prerequisite to carry out the proposed multi-step procedure was the presence of different degrees of LD on the island and a common genetic derivation of the different Corsican sub-populations. In order to evaluate the existence of these conditions in the present paper we extended the analysis to the Corsican coastal populations.

Methods: Samples were analyzed using seven dinucleotide microsatellite markers on chromosome Xq13-21: DXS983, DXS986, DXS8092, DXS8082, DXS1225, DXS8037 and DXS995 spanning approximately 4.0 cM (13.3 Mb). We have also investigated the distribution of the DXS1225-DXS8082 haplotype which has been recently proposed as a good marker of population genetic history due to its low recombination rate.

Results: the results obtained indicate a decrease of LD on the island from the central mountainous toward the coastal sub-populations. In addition the analysis of the DXS1225-DXS8082 haplotype revealed: 1) the presence of a particular haplotype with high frequency; 2) the derivation from a common genetic pool of the sub-populations examined in the present study.

Conclusion: These results indicate the Corsican sub-populations useful for the fine mapping of genes contributing to complex diseases.

MeSH terms

  • Chromosomes, Human, X
  • Founder Effect*
  • France
  • Genetic Variation*
  • Geography
  • Humans
  • Linkage Disequilibrium*
  • Microsatellite Repeats