The aim of this study was to investigate the various MRI biophysical models in the measurements of local cerebral metabolic rate of oxygen (CMRO(2)) and the corresponding relationship with cerebral blood flow (CBF) during brain activation. This aim was addressed by simultaneously measuring the relative changes in CBF, cerebral blood volume (CBV), and blood oxygen level dependent (BOLD) MRI signals in the human visual cortex during visual stimulation. A radial checkerboard delivered flash stimulation at five different frequencies. Two MRI models, the single-compartment model (SCM) and the multicompartment model (MCM), were used to determine the relative changes in CMRO(2) using three methods: [1] SCM with parameters identical to those used in a prior MRI study (M = 0.22; alpha = 0.38); [2] SCM with directly measured parameters (M from hypercapnia and alpha from measured deltaCBV and deltaCBF); and [3] MCM. The magnitude of relative changes in CMRO(2) and the nonlinear relationship between CBF and CMRO(2) obtained with Methods [2] and [3] were not in agreement with those obtained using Method [1]. However, the results of Methods [2] and [3] were aligned with positron emission tomography findings from the literature. Our results indicate that if appropriate parameters are used, the SCM and MCM models are equivalent for quantifying the values of CMRO(2) and determining the flow-metabolism relationship.
(c) 2008 Wiley-Liss, Inc.