Synthesis and preferred all-syn conformation of C3-symmetrical N-(hetero)arylmethyl triindoles

Chemistry. 2008;14(28):8555-61. doi: 10.1002/chem.200800911.

Abstract

A new series of C(3)-symmetrical N-(hetero)arylmethyl triindoles has been synthesized in a straightforward procedure. The structure and conformation in the solid state have been determined for three derivatives (3, 4, and 6) by X-ray crystallographic analysis. In all three cases, the molecules adopt a tripodal conformation with all of the flexible arms directed towards the same side, thereby delimiting an inner cavity. Compound 6 crystallizes and forms C(3)-symmetric dimeric cagelike complexes. Guest molecules of chloroform and water are confined within the resulting cavities with stabilization by different intermolecular interactions; this highlights the potential of these compounds in the construction of supramolecular systems. A computational analysis has been performed to predict the most stable conformers. As a general trend, a preference for a conformation with all branches directed to the same side has been predicted. Comparison between theoretical and experimental results indicates that the computational level selected for the present study, B3LYP/6-31G*, is able to reproduce both the minimum energy conformations and the rotation barriers about the N--CH(2) bond.