To further our understanding of the function of conscious experience we need to know which cognitive processes require awareness and which do not. Here, we show that an unconscious stimulus can trigger inhibitory control processes, commonly ascribed to conscious control mechanisms. We combined the metacontrast masking paradigm and the Go/No-Go paradigm to study whether unconscious No-Go signals can actively trigger high-level inhibitory control processes, strongly associated with the prefrontal cortex (PFC). Behaviorally, unconscious No-Go signals sometimes triggered response inhibition to the level of complete response termination and yielded a slow down in the speed of responses that were not inhibited. Electroencephalographic recordings showed that unconscious No-Go signals elicit two neural events: (1) an early occipital event and (2) a frontocentral event somewhat later in time. The first neural event represents the visual encoding of the unconscious No-Go stimulus, and is also present in a control experiment where the masked stimulus has no behavioral relevance. The second event is unique to the Go/No-Go experiment, and shows the subsequent implementation of inhibitory control in the PFC. The size of the frontal activity pattern correlated highly with the impact of unconscious No-Go signals on subsequent behavior. We conclude that unconscious stimuli can influence whether a task will be performed or interrupted, and thus exert a form of cognitive control. These findings challenge traditional views concerning the proposed relationship between awareness and cognitive control and stretch the alleged limits and depth of unconscious information processing.