Coagulation factor VIII interacts with several members of the low-density lipoprotein receptor family including low-density lipoprotein receptor-related protein, low-density lipoprotein receptor, and very low-density lipoprotein receptor. The present study was aimed to compare the mechanisms of factor VIII interaction with low-density lipoprotein receptor-related protein, megalin, low-density lipoprotein receptor, and very low-density lipoprotein receptor in order to reveal a general mode of these interactions. Binding of plasma-derived factor VIII and its fragments to recombinant soluble ligand-binding domain of low-density lipoprotein receptor (sLDLR1-7) and purified megalin was studied in solid phase and surface plasmon resonance assays. Full-length factor VIII and its light chain bound to the receptors with similar affinities (KD = 260 +/- 9 and 156 +/- 4 nmol/l, respectively, for megalin and KD = 210 +/- 3 and 174 +/- 13 nmol/l, respectively, for sLDLR1-7). Von Willebrand factor inhibited factor VIII binding to both receptors. In contrast to the light chain, exposure of the high-affinity receptor-binding site within the heavy chain (KD = 22 +/- 4 nmol/l for megalin and 17 +/- 3 nmol/l for sLDLR1-7) required proteolytic cleavage by thrombin. This site was mapped to the A2 domain residues 484-509, based on the inhibitory effects of anti-A2 monoclonal antibody 413, and is shared by all four receptors. Using a panel of A2 mutants, we identified key amino acid residues- positively charged K466, R471, R489 and R490, and hydrophilic residues Y487 and S488- which form the frame of this 'consensus' binding site. We conclude that interaction of factor VIII with the members of the low-density lipoprotein receptor family follows the general mode, requires dissociation of factor VIII from von Willebrand factor, and is activation sensitive.