We have previously reported that an acid tolerance response (ATR) can be induced in Streptococcus macedonicus cells at mid-log phase after autoacidification, transient exposure to acidic pH, or acid habituation, as well as at stationary phase. Here, we compared the transcriptional profiles of these epigenetic phenotypes, by RNA arbitrarily primed PCR (RAP-PCR), and their whole-cell chemical compositions, by Fourier transform infrared spectroscopy (FT-IR). RAP-PCR fingerprints revealed significant differences among the phenotypes, indicating that gene expression during the ATR is influenced not only by the growth phase but also by the treatments employed to induce the response. The genes coding for the mannose-specific IID component, the 1,2-diacylglycerol 3-glucosyltransferase, the 3-oxoacyl-acyl carrier protein, the large subunit of carbamoyl-phosphate synthase, and a hypothetical protein were found to be induced at least under some of the acid-adapting conditions. Furthermore, principal component analysis of the second-derivative-transformed FT-IR spectra segregated S. macedonicus phenotypes individually in all spectral regions that are characteristic for major cellular constituents like the polysaccharides of the cell wall, fatty acids of the cell membrane, proteins, and other compounds that absorb in these regions. These findings provide evidence for major changes in cellular composition due to acid adaptation that were clearly different to some extent among the phenotypes. Overall, our data demonstrate the plasticity in the ATR of S. macedonicus, which reflects the inherent ability of the bacterium to adjust the response to the distinctiveness of the imposed stress condition, probably to maximize its adaptability.