Objectives: Nitrofuranylamides (NFAs) are nitroaromatic compounds that have recently been discovered and have potent anti-tuberculosis (TB) activity. A foundational study was performed to evaluate whether this class of agents possesses microbiological properties suitable for future antimycobacterial therapy.
Methods: Five representative compounds of the NFA series were evaluated by standard microbiological assays to determine MICs, MBCs, activity against anaerobic non-replicating persistent Mycobacterium tuberculosis, post-antibiotic effects (PAEs), antibiotic synergy and the basis for resistance.
Results: The antimicrobial activity of these compounds was restricted to bacteria of the M. tuberculosis complex, and all compounds were highly active against drug-susceptible and -resistant strains of M. tuberculosis, with MICs 0.0004-0.05 mg/L. Moreover, no antagonism was observed with front-line anti-TB drugs. Activity was also retained against dormant bacilli in two in vitro low-oxygen models for M. tuberculosis persistence. A long PAE was observed, which was comparable to that of rifampicin, but superior to isoniazid and ethambutol. Spontaneous NFA-resistant mutants arose at a frequency of 10(-5)-10(-7), comparable to that for isoniazid (10(-5)-10(-6)). Some of these mutants exhibited cross-resistance to one or both of the nitroimidazoles PA-824 and OPC-67683. Cross-resistance was associated with inactivation of the reduced F(420)-deazaflavin cofactor pathway and not with inactivation of the Rv3547, the nitroreductase for PA-824 and OPC-67683.
Conclusions: Based on these studies, NFAs have many useful antimycobacterial properties applicable to TB chemotherapy and probably possess a unique mode of action that results in good activity against active and dormant M. tuberculosis. Therefore, the further development of lead compounds in this series is warranted.