Context: PPARG mutations may cause insulin resistance and dyslipidemia, but little is known about the mechanisms of the abnormalities of lipid metabolism.
Objective: We hypothesized that in PPARG mutations, abnormal adipose tissue triglyceride storage causes insulin resistance.
Design, patients, and main outcome measures: Whole-body and adipose tissue-specific metabolic phenotyping through arteriovenous blood sampling was made before and after a mixed meal including 13C-palmitic acid. Studies were performed in a 32-yr-old male with partial lipodystrophy and type 2 diabetes, heterozygous for the PPARG P467L mutation and in an apparently phenotypically normal 32-yr-old male heterozygous for the PPARG n.AAA553T mutation. Comparator groups were age- and sex-matched healthy participants (n=10) and type 2 diabetes sex-matched participants (n=6).
Results: The P467L patient had elevated unmodulated fasting and postprandial plasma nonesterified fatty acid (NEFA) concentrations, despite a low adipose tissue NEFA output. Instead, NEFA appeared to originate directly from triglyceride-rich lipoproteins: 13C-palmitic acid accumulated rapidly in the NEFA fraction, as a sign of impaired fatty acid trapping in tissues. In contrast to the Pparg haploinsufficient mouse, the patient with n.AAA553T mutation did not exhibit paradoxically insulin sensitive and showed a mostly normal metabolic pattern.
Conclusions: The lipodystrophic PPARG P467L phenotype include excessive and uncontrolled generation of NEFA directly from triglyceride-rich lipoproteins, explaining high systemic NEFA concentrations, whereas the human PPARG haploinsufficiency is metabolically almost normal.