A new group of organophosphorus inhibitors of urease, P-methyl phosphinic acids was discovered by using the structure based inhibitor design approach. Several derivatives of the lead compound, aminomethyl(P-methyl)phosphinic acid, were synthesized successfully. Their potency was evaluated in vitro against urease from Bacillus pasteurii and Proteus vulgaris. The studied compounds constitute a group of competitive, reversible inhibitors of bacterial ureases. Obtained thiophosphinic analogues of the most effective structures exhibited kinetic characteristics of potent, slow binding urease inhibitors, with Ki = 170 nM (against B. pasteurii enzyme) for the most active N-( N'-benzyloxycarbonylglycyl)aminomethyl(P-methyl)phosphinothioic acid.