Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte "apoptosis." Osmotic shock, oxidative stress and energy depletion all activate a Ca2(+)-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2(+)-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus interferes with erythrocyte "apoptosis." Susceptibility to scramblase activation is enhanced in thalassemia, sickle cell disease and glucose-6-phosphate dehydrogenase deficiency. Infection with Plasmodium falciparum leads to activation of the cation channel eventually triggering erythrocyte "apoptosis."