Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period

Circ Res. 1991 Sep;69(3):842-56. doi: 10.1161/01.res.69.3.842.

Abstract

The present data were obtained using the technique of optical recording with the voltage-sensitive dye WW781. This technique, unlike electrical methods, was able to provide uninterrupted recordings free of artifacts during defibrillation shocks. Optical recordings were made from sites on the ventricular epicardium of perfused rabbit hearts during electrical pacing. Continuous recordings of the electrophysiological responses of an intact heart to defibrillation threshold-strength shocks were made. It was shown that these shocks were able to stimulate normal-appearing action potentials in nonrefractory myocardium. A new and unexpected finding was that defibrillation threshold-strength shocks were also able to evoke a sustained, depolarizing response from myocardium already undergoing an action potential. This prolonged the time that the myocardium remained in the depolarized state. Prolongation of the depolarized state was accompanied by an equal prolongation of the refractory period. There was no indication that this depolarizing shock response was due to damage of the myocardium by the shock, to heterogeneous electrical responses in the optical recording area, or to the methods used in this study. It is hypothesized that these shocks were able to elicit a new action potential in already depolarized myocardium by hyperpolarizing portions of the myocardium's cellular membranes and, in so doing, to reactivate the fast sodium current. This effect, if prevalent in a fibrillating ventricle, could play a role in the defribillation process by effectively resynchronizing electrical activity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Cardiac Pacing, Artificial
  • Coloring Agents
  • Electric Countershock*
  • Electrocardiography
  • Electrophysiology
  • Heart / physiology*
  • In Vitro Techniques
  • Optics and Photonics*
  • Perfusion
  • Rabbits

Substances

  • Coloring Agents