Modulation of the acoustic startle response is a simple and objective indicator of emotionality and attention in rodents and humans. This finding has proven extremely valuable for the analysis of neural systems associated with fear and anxiety. Until recently, there have been few efforts to develop acoustic startle measurement in non-human primates. Here we review recent work in which whole body acoustic startle amplitude has been measured in rhesus monkeys. Initial studies revealed that the amplitude of whole body startle in monkeys, as in rodents and humans, is directly proportional to acoustic stimulus intensity and gradually habituates with repeated exposures. Presentation of a weak acoustic stimulus 25-5,000 msec before a startle stimulus reduces startle amplitude by 40-50% depending on inter-stimulus interval length (prepulse inhibition). We have also measured significant fear-potentiated startle in the presence of a visual stimulus after pairing it with an inescapable pulse of pressurized air (fear-potentiated startle). This effect was reduced by diazepam and morphine, but not by buspirone. Ibotenic acid-induced lesions of the amygdala prevented the acquisition of fear-potentiated startle but, remarkably, did not prevent the expression of fear-potentiated startle when fear conditioning was carried out prior to the lesion. Finally, we have developed an objective measure of fear inhibition in monkeys using a novel conditioned inhibition procedure identical to one used in rats and humans. Our data demonstrate that acoustic startle in non-human primates successfully bridges rodent and human research. The opportunity now emerges to link concepts developed in rodents to the more complex neuroanatomical and cognitive processes common to monkeys and humans.