High-throughput, high-content screening (HT-HCS) of large compound libraries for drug discovery imposes new constraints on image analysis algorithms. Time and robustness are paramount while accuracy is intrinsically statistical. In this article, a fast and fully automated algorithm for cell segmentation is proposed. The algorithm is based on a strong attachment to the data that provide robustness and have been validated on the HT-HCS of large compound libraries and different biological assays. We present the algorithm and its performance, a description of its advantages and limitations, and a discussion of its range of application.
Copyright 2008 International Society for Advancement of Cytometry.