The recent introduction of cost-effective accelerator processors (APs), such as the IBM Cell processor and Nvidia's graphics processing units (GPUs), represents an important technological innovation which promises to unleash the full potential of atomistic molecular modeling and simulation for the biotechnology industry. Present APs can deliver over an order of magnitude more floating-point operations per second (flops) than standard processors, broadly equivalent to a decade of Moore's law growth, and significantly reduce the cost of current atom-based molecular simulations. In conjunction with distributed and grid-computing solutions, accelerated molecular simulations may finally be used to extend current in silico protocols by the use of accurate thermodynamic calculations instead of approximate methods and simulate hundreds of protein-ligand complexes with full molecular specificity, a crucial requirement of in silico drug discovery workflows.