Development and validation of a reversed-phase high-performance liquid chromatography assay for polymyxin B in human plasma

J Antimicrob Chemother. 2008 Nov;62(5):1009-14. doi: 10.1093/jac/dkn343. Epub 2008 Sep 1.

Abstract

Objectives: The purpose of this study was to develop a specific, sensitive, accurate and reproducible high-performance liquid chromatographic (HPLC) method to measure polymyxin B in human plasma.

Methods: Derivatization of polymyxin B with fluorescent 9-fluorenylmethyl chloroformate (FMOC-Cl) was performed in the same solid-phase extraction C18 cartridge used for the sample pre-treatment. Reversed-phase HPLC was employed with fluorometric detection. The summed peak areas of polymyxin B1 and B2 derivatives were used for quantification. Stability of polymyxin B FMOC derivatives was examined at room temperature for 6 days. Specificity was investigated against seven potentially co-administered antibiotics. Accuracy and reproducibility of the HPLC assay were determined by inter- and intra-day validation.

Results: The derivatives of polymyxin B2 and B1 were well resolved and had retention times of 4.75 and 5.55 min, respectively. Good linearity (r(2) > 0.99) was obtained between 0.125 and 4.00 mg/L polymyxin B in human plasma with good accuracy and reproducibility at the limit of quantification (0.125 mg/L). Intra- and inter-day validation demonstrated good accuracy and reproducibility for quality control samples with nominal concentrations of 0.30 and 3.00 mg/L. FMOC derivatives of polymyxin B were stable for at least 3 days at room temperature. None of the possibly co-administered antibiotics tested interfered with the chromatographic analysis of the polymyxin B FMOC derivatives.

Conclusions: A rapid, specific, sensitive, accurate and reproducible HPLC method has been developed and validated to measure polymyxin B in human plasma. The method is suitable for clinical pharmacokinetic studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Chromatography, High Pressure Liquid / methods*
  • Fluorenes / metabolism
  • Humans
  • Molecular Structure
  • Plasma / chemistry*
  • Polymyxin B / analysis*
  • Polymyxin B / metabolism
  • Reproducibility of Results
  • Sensitivity and Specificity

Substances

  • Fluorenes
  • 1-(9-fluorenyl)methyl chloroformate
  • Polymyxin B