Sentential negation is a universal syntactic feature of human languages that reverses the truth value expressed by a sentence. An intriguing question concerns what brain mechanisms underlie our ability to represent and understand the meaning of negative sentences. We approach this issue by investigating action-related language processing and the associated neural representations. Using functional magnetic resonance imaging we measured brain activity in 18 healthy subjects during passive listening of sentences characterized by a factorial combination of polarity (affirmative vs. negative) and concreteness (action-related vs. abstract). Negation deactivated cortical areas and the left pallidum. Compared to abstract sentences, action-related sentences activated the left-hemispheric action-representation system. Crucially, the polarity by concreteness interactions showed that the activity within the action-representation system was specifically reduced for negative action-related vs. affirmative action-related sentences (compared to abstract sentences). Accordingly, functional integration within this system as measured by Dynamic Causal Modeling was specifically weaker for negative action-related than for affirmative action-related sentences. This modulation of action representations indicates that sentential negation transiently reduces the access to mental representations of the negated information.