Noninvasive 31P nuclear magnetic resonance measurements indicate that during the initial reperfusion phase myocardial tissue contents of phosphocreatine (PCr) recover rapidly, while ATP levels remain low and recover slowly. There is also a burst of H2O2 during the first 10 min of reperfusion, as indicated by the in vivo inactivation of catalase that occurs only when H2O2, and the inactivator 3-aminotriazole (AMT), are simultaneously present. Neither H2O2 production nor CK inactivation was discernable after ischemia alone. In excitable tissue the PCr and ATP pools are equilibrated by the enzyme creatine kinase (CK), but myocardial CK activity is decreased by 20% after reperfusion, though not by simple washout. Extrapolating from the well-known air sensitivity of CK, we find that limited exposure in vitro to small concentrations of H2O2 can markedly diminish CK activity. We postulate that failure of certain CK isoenzymes at energy-using termini may decouple the relative rates of PCr production and ATP regeneration and hence cause elevated PCr-to-ATP ratios. The assumptions of 1) CK equilibrium during the reperfusion period to calculate free ADP levels and 2) cardiac recovery deduced from the elevation of PCr levels may require reexamination.