Dendritic cells (DC) for the immunotherapy of cancer and infectious disease require the appropriate maturation and activation signals to effectively present antigen to drive a proinflammatory response. Here we present a comparison of 4 different maturation protocols for antigen-encoded mRNA electroporated DC. Two protocols rely on cytokine-induced maturation given either preelectroporation or postelectroporation. In addition to the cytokine treatment, 2 further maturation protocols use coelectroporation of CD40L mRNA, with antigen-encoding RNA, to deliver CD40 signals. There were no significant differences in expression of costimulatory molecules such as CD80, CD83, and CD86 or the levels of expression of major histocompatibility complexes. However, results indicate that delivery of an inflammatory signal that includes interferon-gamma before the CD40 signal results in high levels of expression of interleukin-12 that was not seen in the absence of CD40L mRNA. All 4 preparations could induce expansion of primary MART-1-specific CD8+ T cells from healthy donors in vitro, but only the 2 processes receiving CD40L could induce interferon-gamma expression by those responder cells. Only DC electroporated with CD40L RNA after delivery of the inflammatory signal (PME-CD40L DC), could drive the long-term expansion of MART-1-reactive cells that displayed a CD28+/CD45RA- effector/memory phenotype with strong cytolytic activity.