[(11)C]Loperamide has been proposed for imaging P-glycoprotein (P-gp) function with positron emission tomography (PET), but its metabolism to [N-methyl-(11)C] N-desmethyl-loperamide ([(11)C]dLop; [(11)C]3) precludes quantification. We considered that [(11)C]3 might itself be a superior radiotracer for imaging brain P-gp function and therefore aimed to prepare [(11)C]3 and characterize its efficacy. An amide precursor (2) was synthesized and methylated with [(11)C]iodomethane to give [(11)C]3. After administration of [(11)C]3 to wild-type mice, brain radioactivity uptake was very low. In P-gp (mdr-1a(-/-)) knockout mice, brain uptake of radioactivity at 30 min increased about 3.5-fold by PET measures, and over 7-fold by ex vivo measures. In knockout mice, brain radioactivity was predominantly (90%) unchanged radiotracer. In monkey PET experiments, brain radioactivity uptake was also very low but after P-gp blockade increased more than 7-fold. [(11)C]3 is an effective new radiotracer for imaging brain P-gp function and, in favor of future successful quantification, appears free of extensive brain-penetrant radiometabolites.