Background: In asthma, higher chymase positive mast cell (MC-C) numbers are associated with less airway obstruction. In COPD, the distribution of MC-C and tryptase positive mast cells (MC-T) in central and peripheral airways, and their relation with lung function, is unknown. We compared MC-T and MC-C distributions in COPD and controls without airflow limitation, and determined their relation with lung function.
Methods: Lung tissue sections from 19 COPD patients (median [interquartile range] FEV1% predicted 56 [23-75]) and 10 controls were stained for tryptase and chymase. Numbers of MC-T and MC-C were determined in different regions of central and peripheral airways and percentage of degranulation was determined.
Results: COPD patients had lower MC-T numbers in the subepithelial area of central airways than controls. In COPD, MC-T numbers in the airway wall and more specifically in the epithelium and subepithelial area of peripheral airways correlated positively with FEV1/VC (Spearman's rho (rs) 0.47, p = 0.05 and rs 0.48, p = 0.05, respectively); MC-C numbers in airway smooth muscle of peripheral airways correlated positively with FEV1% predicted (rs 0.57, p = 0.02). Both in COPD patients and controls the percentage of degranulated MC-T and MC-C mast cells was higher in peripheral than in central airways (all p < 0.05), but this was not different between the groups.
Conclusion: More MC-T and MC-C in peripheral airways correlate with better lung function in COPD patients. It is yet to determine whether this reflects a protective association of mast cells with COPD pathogenesis, or that other explanations are to be considered.