Dual role of the beta2-adrenergic receptor C terminus for the binding of beta-arrestin and receptor internalization

J Biol Chem. 2008 Nov 14;283(46):31840-8. doi: 10.1074/jbc.M806086200. Epub 2008 Sep 18.

Abstract

Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Arrestins / metabolism*
  • Cell Line
  • Humans
  • Kinetics
  • Ligands
  • Molecular Sequence Data
  • Mutation / genetics
  • Phosphorylation
  • Protein Binding
  • Protein Transport
  • Receptors, Adrenergic, beta-2 / chemistry
  • Receptors, Adrenergic, beta-2 / genetics
  • Receptors, Adrenergic, beta-2 / metabolism*
  • Sequence Alignment
  • beta-Arrestins

Substances

  • Arrestins
  • Ligands
  • Receptors, Adrenergic, beta-2
  • beta-Arrestins