By comparing mtDNA sequences between different orders of mammals, we show that both longevity and generation time are significantly correlated with the nucleotide content of the mtDNA. Specifically, there is a positive correlation between generation time and mt GC content. This correlation is repeated, at a finer evolutionary scale, within the primates. Moreover, a comparison of human and chimpanzee mtDNAs shows that the effect has been very pronounced during the short evolutionary period since the divergence of these two species, with human mtDNA showing a GC-biased pattern of substitution at the variable sites. In addition to these DNA sequence patterns, comparisons between the human and the chimp mt protein sequences also revealed a surprisingly high substitution rate for threonine residues, resulting in a reduction of threonine in the human mt proteome. These patterns of both DNA and protein evolution can be explained by a balance between AT-biased mutational pressure and age-related purifying selection.