Importins, also called karyopherins, belong to a large family of proteins involved in cytoplasm-to-nucleus transport. Transport machinery generally involves a complex formed by two different importin subtypes (alpha and beta). Both alpha and beta importins are expressed in the brain, and their expression and localization is regulated by physiological neuronal activity. Little is known about regulation of importin expression in brain pathological conditions. Here we studied the expression of importin beta1 (imp beta 1) in the rat hippocampus after acute and chronic seizures induced by the glutamate agonist kainic acid (KA). The overall content of imp beta 1 mRNA and protein did not change after acute KA seizures. However, acute KA seizures rapidly induced the translocation of imp beta 1 protein from the cytoplasm to the nucleus in pyramidal CA1 neurons. KA-induced imp beta 1 translocation was prevented by the NMDA (N-methyl-D-aspartic acid) receptor blocker MK-801. After chronic seizures, the overall levels of imp beta 1 mRNA and protein did not change in the whole hippocampus. Immunohistochemistry revealed a massive loss of imp beta 1-positive neurons in pyramidal layers (that degenerated after KA), whereas an increased number of imp beta 1-positive cells was detected in the stratum radiatum of rats with chronic seizures compared with control animals. Double-labeling experiments identified these cells as glial cells expressing the chondroitin sulfate proteoglycan NG2 (neuron/glial antigen 2), a glial subtype recently shown to regulate hippocampal neuron excitability. These data show a differential regulation of imp beta 1 expression after acute and chronic seizure activity in the rat hippocampus.