Mole-rat species within the family Bathyergidae exhibit a wide range of reproductive strategies and social systems. Various forms of reproductive suppression are displayed within this family: in the solitary species, breeding is suspended for part of the year and in the social species, reproduction is suppressed in subordinate animals. This study investigated the gonadotrophin-releasing hormone 1 (GnHR-1) systems of breeding and non-breeding solitary Cape mole-rats and social Natal mole-rats for possible inter- and/or intra-species differences. In both species, GnRH-1 cell bodies are predominantly in the medial septum region of the diagonal band or the preoptic area, with relatively few in the mediobasal hypothalamus; a dense concentration of GnRH-1-immunoreactive (ir) processes is present in the region of the organum vasculosum of the lamina terminalis. In Cape mole-rats, GnRH-1-ir processes are particularly dense within the lateral margins of the median eminence, which is enfolded by a large pars tuberalis of the pituitary gland. Natal mole-rats display GnRH-1-ir processes across the breadth of the median eminence, which is abutted by a relatively small pars tuberalis. There are more GnRH-1-ir cell bodies in Natal mole-rats than in Cape mole-rats ( approximately 720 vs. approximately 420). No significant differences were found in the number, distribution or size of GnRH-1-ir cell bodies according to season in Cape mole-rats or according to reproductive status or sex in Natal mole-rats. In female and male Natal mole-rats, GnRH-1-immunoreactivity in the median eminence is less dense in the reproductive animals; no such difference was found in Cape mole-rats between the breeding and non-breeding seasons. These immunohistochemical results are discussed in the light of earlier studies which identified no functional neuroendocrine impediments underlying regulated reproduction in either Cape or Natal mole-rats. The cumulative findings suggest that the principal factors determining seasonal or socially induced suppression of reproduction in these species are behavioral rather than neuroendocrine.