The mitogen-activated protein kinases (MAPKs) play essential roles during oocyte maturation and egg activation and are also active in somatic cell cycle regulation in many animals. In clams, starfish, ascidians, mice, and frogs, the species-specific timing of MAPK activity during oocyte maturation and egg activation correlates with the different meiotic arrest points of these various organisms. Furthermore, MAPKs have been shown to regulate the meiotic cell cycle in marine invertebrates and vertebrates. The initial trigger for egg activation in insects is different from that of marine invertebrates and vertebrates, and it was not previously known whether changes in MAPK activity accompany egg activation in insects. To examine the regulation of MAPKs during Drosophila egg activation and early embryogenesis, we quantified the levels of phosphorylated (active) forms of ERK, p38 and JNK by western blotting with antibodies specific to the phospho-forms of these kinases. Levels of phospho-ERK, phospho-p38 and phospho-JNK are high in Drosophila oocytes. Upon egg activation, levels of all these phospho- (active) forms of MAPKs decrease. Fertilization is not required for this decrease, consistent with the independence of egg activation from fertilization in Drosophila. The decrease in levels of phospho-MAPK occurs normally in embryos laid by sterile females mutant in the egg activation genes cortex, sarah, and prage. We present a model in which the decrease in MAPK activity is an intermediate step in the pathway leading from the calcium signal that initiates egg activation to the downstream events of activation.