Transcriptional changes in Pisolithus tinctorius leading to ectomycorrhizal formation in P. tinctorius- Castanea sativa were investigated using a 12-h fungal interaction in vitro system. Using a 3107-cDNA clone microarray, 34 unique expressed sequence tags (ESTs) were found to be differentially expressed. These ESTs represent 14 known genes, 5 upregulated and 9 downregulated, and 20 orphan sequences. Some transcripts of upregulated genes (with unknown function) were previously identified in other mycorrhizal Pisolithus spp. associations. ESTs for S-adenosyl-L-homocysteine hydrolase and several orphan sequences were identified in our system. The identified transcript of downregulated genes involved hydrophobins, 5S, 18S, and 28S ribosomal RNA genes, large subunits of ribosomal RNA (mitochondrial gene), and two types of heat shock proteins. This study demonstrates the high complexity of molecular events involved in the preinfection steps and suggests the utilization of different fungal gene repertories before ectomycorrhizal formation. These data constitute a first contribution for the molecular understanding of early signaling events between P. tinctorius and C. sativa roots during ectomycorrhizal formation.