It was reported that ATP, an excitatory chemical mediator, exerts its effects by activation of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) purinoceptors in the nervous system. In the present work, we used confocal laser scanning microscopy and high-performance liquid chromatography to assess the role of the P2Y1 receptor in ATP-evoked Ca2+ mobilization and glutamate release from cultured dorsal spinal cord astrocytes. ATP (0.01-100 micromol/l) produces a dose-dependent rise in the Ca2+ relative fluorescence intensity in cultured astrocytes. N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179, 0.01-100 micromol/l), a P2Y1-specific antagonist, could dose-dependently inhibit ATP-evoked Ca2+ mobilization. In addition, 100 micromol/l ATP caused glutamate efflux from cultured dorsal spinal cord astrocytes in a time-dependent manner. 100 micromol/l MRS2179 significantly inhibited the glutamate efflux induced by ATP, which suggests that P2Y1 receptor activation is responsible for the ATP-induced glutamate efflux from astrocytes. Taken together, our results demonstrate that P2Y1 receptor plays an important role in modulating the function of astrocytes, which raises the possibility that MRS2179, a potent P2Y1-specific antagonist, may become a potential drug in treating many chronic neurological diseases characterized by astrocytic activation in the nervous system.
Copyright 2008 S. Karger AG, Basel.