Interleukin (IL)-4 and -13 are related cytokines sharing functional receptors. IL-4 signals through the type I (IL-4Ralpha/common gamma-chain [gammac]) and the type II (IL-4Ralpha/-13Ralpha1) IL-4 receptors, whereas IL-13 utilizes only the type II receptor. In this study, we show that mouse bone marrow-derived macrophages and human and mouse monocytes showed a much greater sensitivity to IL-4 than to IL-13. Lack of functional gammac made these cells poorly responsive to IL-4, while retaining full responsiveness to IL-13. In mouse peritoneal macrophages, IL-4 potency exceeds that of IL-13, but lack of gammac had only a modest effect on IL-4 signaling. In contrast, IL-13 stimulated greater responses than IL-4 in fibroblasts. Using levels of receptor chain expression and known binding affinities, we modeled the assemblage of functional type I and II receptor complexes. The differential expression of IL-4Ralpha, IL-13Ralpha1, and gammac accounted for the distinct IL-4-IL-13 sensitivities of the various cell types. These findings provide an explanation for IL-13's principal function as an "effector" cytokine and IL-4's principal role as an "immunoregulatory" cytokine.