Lipoproteins from two pathogenic spirochetes (Borrelia burgdorferi and Treponema pallidum) induced the biosynthesis of TNF in murine macrophages and in permanently transformed macrophages of the cell line RAW 264.7. Induction was studied by measuring the secretion of biologically active TNF and by measuring the activity of the reporter enzyme chloramphenicol acetyltransferase (CAT) produced within macrophages transfected with an endotoxin-responsive CAT construct. Several lines of evidence indicated that the induction of TNF and CAT was attributable to the spirochete lipoproteins rather than to contaminating or endogenous LPS: 1) the dose response curves observed for the lipoproteins were markedly different from those obtained with LPS; 2) lipoprotein-mediated activation was unaffected by amounts of polymyxin B that completely neutralized the induction of TNF and CAT by LPS, 3) low concentrations of the lipoproteins induced TNF in macrophages from endotoxin-unresponsive C3H/HeJ mice as effectively as in macrophages from normal C3H/HeN mice, and 4) isolated spirochete lipoproteins, but not a non-lipoprotein immunogen, were potent inducers of CAT in the transformed macrophages. Moreover, LPS was not detected in the B. burgdorferi lipoprotein mixtures by Limulus amebocyte lysate assay. Proteolytic digestion of the intact bacterial protein preparations only modestly diminished their ability to activate the cells, suggesting that small lipopeptides comprise the biologically active portions of the molecules, as is the case with the murein lipoprotein of Escherichia coli. Through their ability to induce TNF production by macrophages, spirochete lipoproteins may play important roles in the development of the local inflammatory changes and the systemic manifestations that characterize syphilis and Lyme disease.