We studied the EMG potentials evoked in the bilateral first dorsal interosseus muscle by electromagnetic stimulation of the corticomotoneuronal descending system in 10 Parkinson's disease patients and in 10 age- and sex-matched normal controls. We selected patients who did not have tremor but had predominant rigidity with asymmetric body involvement. On the rigid side of the PD patients, the threshold to cortical stimulation was lower than on the contralateral side or than normal values. On average, patients had normal central conduction times, but their motor evoked potentials (MEPs) on the rigid side were larger than those of controls when the cortical stimulus was at rest or during slight tonic contraction of the target muscle. In the latter condition, a silent period shorter than that of controls followed MEPs, whereas the peripheral silent period following ulnar nerve stimulation at the wrist was prolonged. Alpha motor neuron excitability, tested by the F-wave method, was enhanced on the rigid side at rest. In rigidity, spinal motor nuclei may be more responsive than normal to descending inputs from motor cortex, or the entire corticomotoneuron system may prove hyperexcitable under given conditions.