Cyclooxygenase-2 (COX-2) inhibitors cause growth inhibition of human gastric carcinoma cells, but it remains unclear whether this is both COX-2 dependent and independent. The related mechanisms remain to be determined. Both low COX-2 expressing gastric carcinoma and high COX-2 expressing gastric carcinoma cells were used to study the effect and mechanisms of celecoxib on gastric carcinoma cell growth. Celecoxib resulted in comparable growth inhibition in AGS cells with stable transfections of small interfering RNA (siRNA) against COX-2 (SAC) and negative control vector (NC) cells. Simultaneously, celecoxib resulted in significant reduction of Bcl-2 and significant increase of p21(WAF1) and p27(KIP1) in SAC and NC cells. The present study shows that celecoxib causes growth inhibition of gastric carcinoma cells by decreasing Bcl-2 of cyclooxygenase-2-dependent pathway, and by increasing p21(WAF1) and p27(KIP1) of cyclooxygenase-2-independent pathway. These data extend our knowledge on the effect and mechanisms of celecoxib-induced inhibition of gastric carcinoma cell growth.